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- _ Abstract

We consider the problem of performing multiplication of n—bit

b inary numbers on a chip. Let A denote the chip area, and T the time

required to perform multiplication. Using a model of computation which

is a realistic approximation to current and anticipated VLSI technology ,
,~c 2 ~~ lpL ~~~~~~~~~~~

we show that

& 

__ 
/ 

(A/A~~(T/T0)
2
~~~ n~~~ 

~~~ ( i - ~~P ~

7 —

for all ~~~~~~~~~~ where A0” and T~ are positive constants which depend
I
__ c, I

on the technology but are independent of a. The exponent 1-kr is the

best possible . A consquence is that binary multiplication is ~~arder”~

than binary addition if AT~~ is used as a complexity measure for any

~ � 
~~~. 

~~ ~~~~~~~
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1. Introduction

We are interested in the design of multipliers suitable for

implementation in VLSI architecture. The multiplication problem has been

considered by several authors, e.g. Garner (76], Kuck (78],  Ofman (621,

Wallace (64] ,  and Winograd (67]. Much attention has been paid to the

tradeoff between time and the number of gates, but until recently little

attention has been paid to the problem of connecting the gates in an

economical and regular way to minimize chip area and design costs.

In this paper we give a lower bound on the area—time product

for multiplication circuits, assuming a model of computation which is

• intended to approximate current and anticipated VLSI technology. Details

of the model are given in Section 2.

The lower bound on AT, where A is the chip area and T the time

to perform n—bit b inary multiplication on the chip , is the special case

ci ½ of a more general lower bound

(1.1) 
(~~

) 
(i

~

)

2a 
> 

l+ct

which is valid for all a e (0 ,1]. We establish the lower bound for the

extreme cases ci — 1 and ci — 0 in Sections 3 and 4 respectively, and deduce

the general result in Section 5. 
—

In this paper we are concerned with lower bounds , and do not

• give any practical designs for multiplication circuits. In Section 6 we

sketch an (impractical) design which has LT
2U 

— ~~~~~~~~ for any € > 0.

Thus, the exponent 1 + ci in (1.1) is sharp, although we do not know any

practical design for which the lower bound is approached .

I 1:%~~~.

_______________
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In Brent and Kung [79 ] we give an upper bound on A and T for

• the problem of addition of n—bit binary numbers . From this result it

follows that binary multiplication is “harder ” than binary addition if

the complexity measure is AT (for any a ~ 0).

2. The Computational Model

Our model is intended to be general , but at the same time real-

istic enough to apply to current VLSI technology such as MOS.

We assume the existence of circuit elements or “gates” which compute a

logical function of two inputs in constant time and occupy at least a

constant minimum area. Gates are connected by wires which have constant

minimum width (or , equivalently, must be separated by at least some

minimal spacing) . Our measure of the cost of a design is the area rather

than the number of gates required. This is an important difference

between our model and earlier models of Winograd (67], Brent [70] and

others .

Assumptions

T.n Sections 3 to 5 we need various subsets of the following

assumptions Al to A8. Comments and justification are given in parentheses

following the statement of each assumption . Our notation is summarized in

the Appendix .

Al. The computation is performed in a convex planar region R of area A.

(Because of heat—dissipation and packing requirements, a two—

dimensional planar model is reasonable. If R is not convex we may

take its convex hull. R may be a whole chip or part of a chip.}

• _ ~~~~••—•• •.- • • — .—-_ •‘ •~~~ — .•- • -

— - -~~~~~~~~~~~~~~~~~~~~~~~~~~
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4.

A2. Wires have minimal v~dth A > 0. (A is assumed constant , but in

applications of our r~sults it will of course depend on the technology:

see Mead and Conway [ 1.91.) We also assume R has width at least A.

A3. At most v ~ 2 wires can overlap at any point in R. (Otherwise the

area could be reduced by. “folding”. Since ~ ~ 2, the graph of wires

(edges) and gates (nodes)-, need not be planar in a graph—theoretic

sense.) -
.

~~ A bit requires minimal time r > 0 to propagate along a wire. The

t ime for one gate computation and an arbitrary fan—out of the

result is included in t .  (Since dimensions are limited by the

minimal wire—width A and minimal gate area , a minimal propagation

time is reasonable. We do not need to assume that the propagation

time increases with the length of the wire. This is fortunate, for

with current technology propagation times are limited by wire

capacitances rather than the velocity of light . A longer wire will

generally have a larger capacitance , and thus require a larger driver

to maintain constant propagation time , but the driver area need not

exceed a fixed percentage of the wire area , so can be ignored if A

is increased slightly; see Head and Conway (79]. Although it would

be reasonable to assume bounded fanout , we do not need this assumption

for proving lover bounds . When proving upper bounds, we do assume
• bounded fanout.)

AS. I/O ports each have area at least p )~ A
2. (If R is a complete chip,

p will be large compared to A
2. If R is only part of a chip and I/O

is to other regions on the chip,p could be of order A
2
.

• 

~~~~~~~~~~~~~~~ _____________________
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A6. Storage for one bit of information takes area at least B > 0.

— 
(B will typically be larger than A 2 , but we do not need to assume this.)

Al. Each input bit is available only once. (There is no free memory

outside R. If the same input bit is required at different times , it • -

must be stored within R , taking area at least B (see A 6 ) . )

A8. The t imes and locations at which input and output bits are available

are fixed and independent of the..values of- the input bits. (This is

necessàry~.if designs ~re to be modular.)

23. A Lower Bound on AT

With the model of Section 2, we have the following lower bound

2on AT for any multiplier circuit .

Theorem 3.1

Under assumptions Al to A5,

(3.1) AT2 
~ K.~n

2 ,

where

(3.2) - ~~ 

(
A t )

2

Before proving Theorem 3.1 we need three Lemmas.

Lemma 3.1

For any convex planar figure with area A, perimeter L ,

diameter D , and chord of length C perpendicular to D,

(3.3) 2ir

Ts~.
I

I’
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and

(3.4) L ~ 2/~X

Proof

The results follow from the well—known inequalities A )~ CD/ 2 ,

r 1) ~ L and L2 
~ 4 v A • For a proof (and a definition of “diameter”

etc) see Yaglom and Boltyauskii (61] .

Lemma 3.2

mm max(16r ,(l—r ) 2) — 16
0�r<l

Proof
2

It is easy to verify that the minimum occurs when l6r — (1—r)

and the only root of this equation in (0 ,1) is r — l/(9+4 v’~).

Lemma 3.3

Suppose that less than ci outputs share any one output port.

Then , under assumptions Al to M,

AT~~~ K~Ln

where

(3.5) K2 — Ar
(9+4/~~~~

L Proof

Let S — 
~~2~~ l’ . . . ,  p~ ) where , in binary notation,

is the Zn—bit product of the n—bit numbers an ... a1 and b~ • . .  b1.

IT

S 

I 

- 
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Let H be the maximum number of elements of S sharing any one output port.

(By assumption, 1 ~ H < n . )  Let D be a diameter of R , and C a chord

perpendicular to D, dividing S into two parts S1 and S2 such that the

output ports for elements of S1 lie on one side of C , and those for

elements of S2 lie on the other side of C. Since we do not use assumption

A6, we can assume that output ports are shrunk to infinitesimal size and

that (by an infinitesimal perturbation from the perpendicular to D) C does

not intersect any output ports . By “sliding” the intersection of C and D

along D, we can arrange that

(3.6) ~ ~~~ 
~ 

[~?j 
for i — 1,2.

- 
.

• Consider multipliers b — for j — O ,l, . . . ,n—l . Multiplying

a — a~ ... -a1 by 2~ gives 
~~~~ 

- a r - for i l , .. ., n. Consider a fixed

a1 with ~ i ~ ci. For j .n—i ,...,n—l , we have ci ~ i+j < 2n , so: Pi+j E S  Let

(S1 if the input port for a~ is on the same aide

~ — 
) of C as the output port s for ilements of

3’ ’  1
(., S2 otherwise .

As j  ranges over n—i ,...,n—l , at most [
~
] of the 

~j+j lie Lu S3(i)

(by (3 .6)) ,  so at least i — [
~

-
~
j lie in S—S 3(i) . Thus , by definition

of S (1) , a bit of information must cross C for each such p 
~~

. Sinmnlng

over i. — ~~~~~~~~~~~ a total of at least O+1+2+ ...+(n — [~-~
j ’) ~

bits must cross C. Since there are only xi possible values of 1’ there is
2

some j  for which at least (‘a’ bits must cross C before the product

of a and b—2~ can be transmitted through the output ports.I / I.. Pf
, ,

H~~.

L~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~
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By assumptions A2 and A3, at most vC/A wires cross C. Thus,

by assumption A4,

fu C’1 ff l  - ; (n-H) 2

8n -

It follows from (3.3) that

(3.7) AT 
XrLu(1-r)

2

where

r—M /n.

- 
• 

Since H outputs come through one output port , assumption A4

gives

(3.8) T ~ Mt.

Also, since M < n, at least one wire crosses C , and assumption Al gives

(3.9) C ~ A.

By assumption 1.3, v ~ 2. Combining this with (3.3) , (3.8) and (3.9)

gives

(3.10) AT > 
ATLDr

The result now follows from (3.7) , (3.10) and Lemma 3.2.

Lemma 3.3 is of interest in its own right. If at one time the

chip inputs or outputs a total of b bits along its boundary , then L � bA

and the lemma gives AT � K2Abn . Thus for any multiplication scheme that
1/2- • accepts, say, n input bits simultaneously along the chip boundary , we

know i ediately that AT � (K
2

A )n 3’~
’2 (cf. the multiplication scheme in

Section 6).

•- - .

_ _ _ _ _ _ _ _ _ _
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Proof of Theorem 3.1

Let M be as in the proof of Lemma 3.3. If H — a, then n output

bits share one output port , and assumption A4 gives T ~ r n. Since there

is at least one output port , assumption AS gives A ~ p ~ x
2, ~

(3.11) AT2 
~ (A m ) 2 

>

If H < ci then Lemma 3.3 is applicable, and gives

AT~~~ K2Lu

so, from (3.4),

AT ~ 2K2 (W A) ½
fl ,

and thus -

(3.12) AT2 
~ 41t4n 2

The result follows from (3.5) , (3.11) and (3.12) . I

Theorem 3.1 (with a smaller constant for K 1
) could have

been established by a proof parallel to that used by Thompson [79 ] for

the DFT problem . In fact , using his result that relates the area of a

graph to its minimum bisection width, one can prove Theorem 3.1 without

the convexity assumption in Al. Our proof, above, represents a new ap—

proach that incorporates geometric considerations in the lover bound proof.

We feel that the extra convexity assumption we make is not restrictive,

since most existing chips do have convex boundaries for packaging reasons.

Furthermore, we note that the convexity assumption is needed for establishing

results such as Lemma 3.3 that relates AT to the perimeter. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -—~-~~~~~ --~ -- - - -~~~~~~~~~~~~~ - -—-
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4. A Lower Bound on the Area A

In Section 3 we gave a lower bound on AT
2. Now , using d i f fe ren t

techniques, we give a lower bound on A.

Theorem 4.1

Under assumptions A5 to A8 ,

(4.1) A~~~A0n

where

(4.2) A0 —

Let — {ij 0 ~ i < N, 0 ~ j  < N )  be the set of all integers which can

be written as a product of two factors, each less than N; and let

p(N) — be the cardinality of P~. For ~x~inp1e, P — {O ,l,2 ,3,4 ,6 ,9}
N A

and p(I.) — 7. Before proving Theorem 4.1. we need lower bounds on ~ (N)

and a related function

(4.3) tS (n) — 
~~
g u(2~)+l—n1 I n .

Lenma 4.1

~

where a(N) — p and is the set of prime - numbers p in the
PE

N_i

range 2~~~p < N .

Proof

The numbers pj are distinct if 2 ~ p < N, p prime, and 1 ~ 
j 
~ 
p.

Thus , the result follows from the def inition of i(N) .

- --.-— — . 4___ - - -• - - - — -— ‘ .— - - —

— —--—- - :- -----—-—- ---- -— - —- -- I ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 
- — - -.— - --- -- .-- 
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Lemma 4.2
N2• 1j (N) 

~ ~in(N) 
for all N ~ 4.

Proof

Using a slight modification of Theorem 1 and equation (4.13) of

Rosser and Schoenfeld [62],  we can show that -

2
a (N) > 2lu (N) for all N ~ 348.

Thus , the result for N ~ 348 follows from Lemna 4.1. For 4 ~ N ~ 347 ,

the result may be verified by a straightforward computation. I

Leimna 4.3

- 
. 

If 5 (N) is defined by (4.3) , then

6(n) ~ for all n ~ 1.

Proof

• From Lemma 4.2,

(4.4) 6(n) ~ [—lg(nln2)1/n,

and it is easy to verify that the right side of (4.4) is at least 5/6 for

all n ~ 18. (There is equality for ci — 18 and a — 24.) For 1 ~ n ~ 17,

direct computation shows that 6(n) ~ 9/10. I

Table 4.1 gives ~
(Z
~),u(2~)/fl(2~

) ,  and 6(n) for n—1 ,2 ,...,17,

where

r (4.5) a(N) — O.7i~1glgN

is an empirical approximation to ii (N). For 5 ~ ci ~ 17, the approximation
• ••

error is lass than 1 percent. If this remained true for ci > 17 , it would

follow that 6(n) ~ 9/10 , and the constant 5/6 in Lemma 4.3 and Theorem 4.1

U - 
- — - % _ S - — — - . - - - — - 

— •———— - ------—---——-— - 
.__ .__~~~~~~~~ __S •___ ~~~ 

— 
~~— - • - ~- — - - •,- — — — -- — - —• _ —  -_ -



N- 
~ —~~.-- — -,.- -- —.-,- -- —--- — — 

-

- 
— - — •-

~~
-.-.—

~
-- --_. ‘.~~~ . _~~

—_ z———-—---— _ __’ •___
~ _.- ,_,--———-~~~~ 

--  •- •..—--- ,- -,.. — - •— - — - - - - --—- —- --------.-- - - --5,
1 1 ~~~-~--—- - ____ - - -

- .. p 
~1~~~~~~

)
-~~~~

;_ 
~
- -

- —-—.. - - -•- -

1 12

could be increased . On the basis of the empirical evidence, we make the

following conj ectures .

-~ Conjecture 4.1 
—

6 (n) 2 9/10 for all n ~ 1.

Conjecture 4.2

lim ~~N) 1glgN 
— 1.

N

n ~(2~i) 
- 

~ (2~ )/~ c25 6(n)

• 
1 2 0.355000 1

2 7 0.748125 1

- 
. 3 26 0.932329 1

— 4 90 0.952734 1

5 340 1.006695 1

6 1,238 0.995890 1

• 
- 

- 
7 4,647 0.997629 1

8 17,578 0.995092 1.

9 67 ,592 1.000412 1

10 259 ,768 0.998846 9/10

11 1,004 ,348 0.998392 10/11

12 3,902,357 0.999002 11/12

13 15,202 050 0.999089 12/13

14 59,410,557 0.999788 13/14

15 232 ,483,840 0.999637 14/15

F 
- 

- 16 911,689 ,012 0.999788 15/16

17 3,581,049 ,040 1.000005 16/17

• Table 4.1 u (2’~) and related functions for n — 1(1)17.

_ _ _ _ _  - -  - - - ---- --__________
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Proof of Theorem 4.1

If n — 1 there is at least one output port , so A ~ 
p, and the

result holds. Hence, suppose that a ~ 2.

Consider the state of the computation just before the last

input bit(s) are accepted. Let m be the number of input bits still to

be accepted, so 1 ~ m ~ 2n.

It is easy to show that there are some inputs a and b such that

the output bits 
~2n ’• .,p~ are not determined by the 2n—m input bits

already accepted. Thus, by assumption A8, at most n—I. bits

have been output .

Suppose that a bits of information are stored in R. Then we

must have by assumption A7

~i(2~ ) < 2m+(n—1)+e

or the circuit could not produce all ~(2~) possible outputs , and would

fail for certain inputs. Thus

m+s ~ Fig ~i(2~ )+l—t 1 — n6 (n) •

and, from Leunna 4.3,

(4.6) m+e ~ 5n/6.

By assumption A6,
L

(4.7) A ~ $s.

-4

5-

‘S c

- - - - — - - - - -5 - -

_ _ _  -- - - — -
~~~~
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Since a port can accept”only one bit at a time, the last a bits~ muSt be

input through m different ports , so £5 gives

(4.8) A 2 pm.

The result follows easily from (4.6), (4.7) and (4.8) .

5. A General Lower Bound Result

Theorems 3.1 and 4.1 are the extreme cases a — 1 and a — 0 of
the following result.

Theorem 5.1

~ 
I . -

• Under assumptions Al to A8, for all a € (0 ,1],

(5.1) (
~

) (T)~~ l+a

Here A.~ is given by (4.2),

(5.2) T0 
— (K1/A0)

½

and K1 is given by (3.2).

P-roof

From Theorem 3.1,

(A/A
0

) (T/T0)
2 
~ n

2

t . 
so

(5.3) (A/A0)
a (T,T0)

2a 
~

— —.——-—--~--.-~
-
~~- 

—.-— 
~~

-
~~~

--- 
- - _ _ - __ ______  ‘~~~~~~

__ - -_~c_~,_ ~~~~~ —-— - - - - 
—
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From Theorem 4.1,

(5.4) (A/A
0)
1
~~ 2 

1-a

Multiplying (5.3) and (5.4) gives the result.

The following Corollary of Theorem 5.1 seems worth stating

separately , for ~~ is often used as a complexity measure (see, e.g., Head

and Rem [79]).

• Corollary 5.1

Under assumptions Al to AS,

- 

• AT ~ K a

where

U 

(5.5) K3 
— A0

T
0 

— (A0K.~)½.

Remarks

1. The constants in Theorem 5.1 and Corollary 5.1 are

A
0 

— 0.83h,

0.068A-r
½vh

and

K — 
0.057Xrh½

where

F 
- - h — ~~/ (8+~)

Note that ½ min(B ,o) ~ ii < min(B ,p)  .

5- -

L 
. - . - - - 

~~
- — — — - - • 

—---
~~~~~ 

--- - - --- - - -~~~~ - - -- - - ~~~~~~~~~ -~--- - -~~~ - - _ __ .____ _ _ _ _ ;  
__ I 

-
~
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2. By the method of Section 6, we can perform binary multiplication

with A — 0(nlg
2n),  T — 0(n½lg2n),  and

(5.5) AT
2a 

— 0(n1~ ’lg
2
~~%) .

Thus, the exponent 1-I-u in Theorem 5.1 is the best possible.

3. By a straightforward method we can achieve A — 0(n2lg c i ) ,  T — 0(lg n) ,

2a 2 l+2aA~F — O(n lg a).

Thus, Theorem 5.1 can not be extended for a > 1.

• 
4. In Brent and Kung (79] we show that, for n—bit binary addition,

2c1 r O(n2’5 if 0 ~ a ~ ½ ,

AT — 4
~-O(n1g~~

2%) if a > ½

Thus, binary addition is easier than binary multiplication, for &U

I complexity measures ~~2a .a ~ Q~. (This holds for a ‘ 1 because

AT2a 
> AT2 � K

1
n
2
.)

6. An Upper Bound on Al2a

It is easy to design practical n—bit multipliers with area

A — 0(n) and time T — 0(n), so
(6.1) AT

2
~ — 0( 1+2(1

)

: - In this section we sketch the design of a multiplier with A - O(nlg
2n)

and T — O(n½lg2n), giving

(6.2) ~~2a 
— 0(n 1

~~~lg
2
~~~~ ),

_______ - - ~~~~~ --.- .------ - -

-5 - S
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- . which is asymptotically better than (6.1). The design is not practical,

but it is theoretically interesting because it shows that the exponent

1 + a in Theorem 5.1 is sharp. We do not know if there is any practical

design having AT2~ o(ni+2C5. Straightforward implementations of “fast”

serial algorithms, e.g. the Sch8nhage—Strassen algorithm (Schonhage and

Strassen [71]), or the “3—2 reduction” algorithm (Ofman [62]) seem to

require area at least order n
2
.

In the remainder of this section we assume:

1. n — k2 is a perfect square, and

2. a — b  = 0 ifj > n/2.
I -  ~

(If not, ci may be increased sufficiently without affecting the asymptotic

results.) Let p be the smallest prime of the form nq+l, q 2 1, F~ the

finite field of integers mod p. We assume that lg p — 0(lg ci) ,  which is

certainly true in practice , as q ~ 84 for all n ~ 10000. (If lg ci ~ 0(lg n)

we replace by the complex field and work to sufficient accuracy to get

the required results C
j  
at Step 5 below, or use other methods described in

Adleman at al- (78] , Borodin and Munro (75] , and Aho at al (74].) Let u be

an n—th root of unity in F , and w — (so w is a k—th root of unity).

Note that in any circuit n is fixed , so we are not concerned with the
p.

complexity of finding p, u etc: they will be encoded into the circuit .

In Steps 1—5 below all arithmetic is done in F~. In Steps 1—3

we compute the Fourier transform I of (a1,. . . ,a~) and 6 of (b1,. . .b)

over F ,p

—~~~~ ~
~-
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- . n—I.
i.e. — a~~1 u~~

for j—0,. . .,n—1, etc.

In Step 4 we multiply the Fourier transforms. In Step 5 we take the

inverse transform, and in Step 6 the final result is computed .

Step 1

Let A, 8, LI , and (U be k by k matrices with elements

A
i1 

— a (i_ l)k.,.j .

— ~~~~~~~~~

— ~
(i 1) (j l)

and W~~ — wU~~ 
(j—l)

Perform Ic by Ic matrix multiplications to compute

A’ — W A  and 8’ W8,

using the “hexagonal. array” scheme of Kung and Leiserson (79] . All

computations are performed in ~~ so each processing element of the

hexagonal array needs to perform arithmetic operations in F~ . Operations

in F~, require no more than area 0(lg2p) and time O(lg2p). Thus, Step 1

can be done with area O(nlg2n) and’time 0(n½].g2n).

• . 
Step 2

Compute A” — A’ oLI and 8” — S’oU , where o denotes component—

wise multiplication.

-~~~~~~~~~~ S~—~--~~~~ — 

~~-~~~ -
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Step 3

Compute A” — A”W and 5” — 8”W using the same method as

for Step 1. It may be shown that A” and 8” contain the Fourier trans-

forms of (a
1,...,a

) and (b1,...,b ) ,  in fact

A’” — aij (j — l)k+i
and 

~~~~~~~~ 
— s

~ _1~ +i for 1 ~ i,j ~ Ic.

Step 4

Compute C” —

Step 5

Compute C — W~~(U’ o(C ”W~~)) as in Steps 1—3. Here
• 

u’1~ — u 
]Xj i) . C represents the inverse Fourier transform of C”. If

~~ — c
(i_l)k+j

then, by the convolution Theorem and our assumption 2 above ,

c
j 

— a
1b~ + a

2b~~1 + ... + a~b1 for 1 
~ 
j ~ a.

Zn cii—i r ilThus, L P~2 — 
~ 

c~2
i—I. i—I

and the problem of computing 
~~~~~~~~~ 

has been reduced to the problem

of su ing 0(lg ci ) numbers of at most 2n bits (since the c~ have 0(lg ci)

bits). Hence, the final step in the computation is:

Step 6

Compute 
~2n’”’~’1 

from the c~ .

This may be done by O(lg n) additions, each requiring area O(lg ci) and

time 0(lg ci): see Brent and Kung [79].
5-

‘S

- ~~~~
- -,- - - - - ~~~~~ - - — -  - - S

I •~~ 
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—-- —
~~ 

_ _  



- —-— — 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~

—

~~~~~

---- -- -- - 
- 

- - -

20.

This completes our outline of the multiplier with area

A — 0 (nlg2n) ,  time T — 0(n½lg2n), and ~~2a 
— 0(n~~~1g2~~%). The

exponent 2+4a of lgn can certainly be reduced , but we do not know what

its minimal value is.

7. Some Open Problems

Our results suggest several interesting problems:

1. Can the constants A0 and T0 be increased ?

2. Row far can the gap 0 (lg
2
~~%) between the upper and lower bounds

be reduced?

3. Is there a practical design with AT2~ — 0(n~~’~~), for all c > 0?

4. Can any of our assumptions Al to AS be relaxed?

5. Can the restriction to binary representation be removed?

6. For binary division it is easy to deduce a lower bound of the same

form as (5.1), using the method of Brent (76]; and an upper bound

- I AT2~ — 0(n1
~~~1g

2
~~%), using Newton ’s method. Thompson ~793 has

proved a lower- bound like (5.1) f-or computation of the discrete

Fourier transform, using a model similar (though not identical) to

ours. Can similar upper and/or lower bounds be proved for other

computations?

1~

1.

1-
~_ 

~~

—
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Appendix : Summary of Notation

a : input to multiplier, 0 ~ a < 2~ , a — a
n...al 

in binary notation.

a
1 

i—th least significant bit of a, I ~ 1 ~ n.

~~~~~~~~~ is Fourier transform of ~~~~~~~~~ over F .  
• 

—

A : area of region H. See assumption Al.

A0 : 5h/6.

A k by k matrix (A~~); See Sec~ion~~.- - Similarly -for A’ , A” and A”.
b : input to. multiplier, 0 ~ b < 2” , b — b~~...b1.

b~ : i—th least significant bit of b , 1 ~ i ~ n.

~~
l’• .. S )  is Fourier transform of (b1,...,b ) over F~.

- 
. 

B k by k matrix. See Section 6. Similarly for 5’, 8” and 8”.

C chord (almost) perpendicular to D, or length of chord. See

Section 3.

C : k by k matrix. See Sectioà 6.” Similarly for C’” .

D : diameter of R, or length of diameter. See Section 3.

finite field of p elements . See Section 6.

Ii :

1 nonnegative integer.

j  nonnegative integer .

k : • See Section 6.

constant,- l  ~ 1 ~ 3. See (3.2), (3.5) and (5.5).

lg : log2 . lg~n denotes (log2 (n))~~.

in : log .

- - L : perimeter of R, or length of the perimeter.

m : number of input bits still to be accepted . See proof of This . 4.1.

- - - 
_ _ _ _ _  
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M : maximum number of elements of S sharing any output port .

See Lemma 3.3.

n number of bits in inputs a and b.

N : positive integer.

p prime number (p > 1). (p — nq+l in Section 6.)

i—th least significant output bit , output 
~2n •p1 

in binary

notation.

{ij 0 ~ i < N, 0 
~ 
j < N}. See Section 4.

p prime, 2~~~p~~~N}

q : positive integer.

• r Mm .  See Lemma 3.3. (Free variable in Lemma 3.2.)

H region in which computation is performed. See assumption Al.

$ : number of bits of information stored in H. See proof of This. 4.1.

S : 
~
‘2n—1’ .,p1,). See proof of Lemma 3.3.

S~ : subsequence of 5, 1 ~ i ~ 3.

T time required for computation.

T
0 

constant def ined by equation (5.2).

u : n—th root of unity in F~.

— 

LI k by k matrix. See Section 6. Similarly for U’ .

w : k—th root of onity in F , w —

W k by k matrix. See Section 6.

: free variable, 0 ~ a ~ 1.

— B : minimum area required to store one bit. See assumption A6.

function defined by equation (4.3).

A : minimum width of a wire. See assumption Al.

: ~(N) — IP IN

w

~

._ - --

~
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~
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~
••- - .

~~~
—— --— -

-~~~~
-— -- — —

~~~~~~~

~

-- - - - -

~

- -- - —



r~ 
~~~~~~ 

~~::.— ~~~~~~~ __________ 
— -

~~
----•- —--—-------— -

~~~~

) -1~ ~~~~~~~ —

25.

~ (N) — N2/(O.7l + lglgN ) ,  approximation to M (N).

v maximum number of wires which can overlap at any point .

See assumption AS .

p : minimum area for an I/O port. See assumption AS.

a : a(N) — 
~ 

p .

~~~N—l

-r : minimum t ime for propagation of one bit along a wire. See

assumption A4 .
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